23 research outputs found

    Current challenges in software solutions for mass spectrometry-based quantitative proteomics

    Get PDF
    This work was in part supported by the PRIME-XS project, grant agreement number 262067, funded by the European Union seventh Framework Programme; The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative; The Netherlands Bioinformatics Centre; and the Centre for Biomedical Genetics (to S.C., B.B. and A.J.R.H); by NIH grants NCRR RR001614 and RR019934 (to the UCSF Mass Spectrometry Facility, director: A.L. Burlingame, P.B.); and by grants from the MRC, CR-UK, BBSRC and Barts and the London Charity (to P.C.

    Fluorescence-Tagged Transgenic Lines Reveal Genetic Defects in Pollen Growthβ€”Application to the Eif3 Complex

    Get PDF
    BACKGROUND: Mutations in several subunits of eukaryotic translation initiation factor 3 (eIF3) cause male transmission defects in Arabidopsis thaliana. To identify the stage of pollen development at which eIF3 becomes essential it is desirable to examine viable pollen and distinguish mutant from wild type. To accomplish this we have developed a broadly applicable method to track mutant alleles that are not already tagged by a visible marker gene through the male lineage of Arabidopsis. METHODOLOGY/PRINCIPAL FINDINGS: Fluorescence tagged lines (FTLs) harbor a transgenic fluorescent protein gene (XFP) expressed by the pollen-specific LAT52 promoter at a defined chromosomal position. In the existing collection of FTLs there are enough XFP marker genes to track nearly every nuclear gene by virtue of its genetic linkage to a transgenic marker gene. Using FTLs in a quartet mutant, which yields mature pollen tetrads, we determined that the pollen transmission defect of the eif3h-1 allele is due to a combination of reduced pollen germination and reduced pollen tube elongation. We also detected reduced pollen germination for eif3e. However, neither eif3h nor eif3e, unlike other known gametophytic mutations, measurably disrupted the early stages of pollen maturation. CONCLUSION/SIGNIFICANCE: eIF3h and eIF3e both become essential during pollen germination, a stage of vigorous translation of newly transcribed mRNAs. These data delimit the end of the developmental window during which paternal rescue is still possible. Moreover, the FTL collection of mapped fluorescent protein transgenes represents an attractive resource for elucidating the pollen development phenotypes of any fine-mapped mutation in Arabidopsis

    A Mighty Small Heart: The Cardiac Proteome of Adult Drosophila melanogaster

    Get PDF
    Drosophila melanogaster is emerging as a powerful model system for the study of cardiac disease. Establishing peptide and protein maps of the Drosophila heart is central to implementation of protein network studies that will allow us to assess the hallmarks of Drosophila heart pathogenesis and gauge the degree of conservation with human disease mechanisms on a systems level. Using a gel-LC-MS/MS approach, we identified 1228 protein clusters from 145 dissected adult fly hearts. Contractile, cytostructural and mitochondrial proteins were most abundant consistent with electron micrographs of the Drosophila cardiac tube. Functional/Ontological enrichment analysis further showed that proteins involved in glycolysis, Ca2+-binding, redox, and G-protein signaling, among other processes, are also over-represented. Comparison with a mouse heart proteome revealed conservation at the level of molecular function, biological processes and cellular components. The subsisting peptidome encompassed 5169 distinct heart-associated peptides, of which 1293 (25%) had not been identified in a recent Drosophila peptide compendium. PeptideClassifier analysis was further used to map peptides to specific gene-models. 1872 peptides provide valuable information about protein isoform groups whereas a further 3112 uniquely identify specific protein isoforms and may be used as a heart-associated peptide resource for quantitative proteomic approaches based on multiple-reaction monitoring. In summary, identification of excitation-contraction protein landmarks, orthologues of proteins associated with cardiovascular defects, and conservation of protein ontologies, provides testimony to the heart-like character of the Drosophila cardiac tube and to the utility of proteomics as a complement to the power of genetics in this growing model of human heart disease

    Molecular Foundations of Reproductive Lethality in Arabidopsis thaliana

    Get PDF
    The SeedGenes database (www.seedgenes.org) contains information on more than 400 genes required for embryo development in Arabidopsis. Many of these EMBRYO-DEFECTIVE (EMB) genes encode proteins with an essential function required throughout the life cycle. This raises a fundamental question. Why does elimination of an essential gene in Arabidopsis often result in embryo lethality rather than gametophyte lethality? In other words, how do mutant (emb) gametophytes survive and participate in fertilization when an essential cellular function is disrupted? Furthermore, why do some mutant embryos proceed further in development than others? To address these questions, we first established a curated dataset of genes required for gametophyte development in Arabidopsis based on information extracted from the literature. This provided a basis for comparison with EMB genes obtained from the SeedGenes dataset. We also identified genes that exhibited both embryo and gametophyte defects when disrupted by a loss-of-function mutation. We then evaluated the relationship between mutant phenotype, gene redundancy, mutant allele strength, gene expression pattern, protein function, and intracellular protein localization to determine what factors influence the phenotypes of lethal mutants in Arabidopsis. After removing cases where continued development potentially resulted from gene redundancy or residual function of a weak mutant allele, we identified numerous examples of viable mutant (emb) gametophytes that required further explanation. We propose that the presence of gene products derived from transcription in diploid (heterozygous) sporocytes often enables mutant gametophytes to survive the loss of an essential gene in Arabidopsis. Whether gene disruption results in embryo or gametophyte lethality therefore depends in part on the ability of residual, parental gene products to support gametophyte development. We also highlight here 70 preglobular embryo mutants with a zygotic pattern of inheritance, which provide valuable insights into the maternal-to-zygotic transition in Arabidopsis and the timing of paternal gene activation during embryo development

    Penetration of the Stigma and Style Elicits a Novel Transcriptome in Pollen Tubes, Pointing to Genes Critical for Growth in a Pistil

    Get PDF
    Pollen tubes extend through pistil tissues and are guided to ovules where they release sperm for fertilization. Although pollen tubes can germinate and elongate in a synthetic medium, their trajectory is random and their growth rates are slower compared to growth in pistil tissues. Furthermore, interaction with the pistil renders pollen tubes competent to respond to guidance cues secreted by specialized cells within the ovule. The molecular basis for this potentiation of the pollen tube by the pistil remains uncharacterized. Using microarray analysis in Arabidopsis, we show that pollen tubes that have grown through stigma and style tissues of a pistil have a distinct gene expression profile and express a substantially larger fraction of the Arabidopsis genome than pollen grains or pollen tubes grown in vitro. Genes involved in signal transduction, transcription, and pollen tube growth are overrepresented in the subset of the Arabidopsis genome that is enriched in pistil-interacted pollen tubes, suggesting the possibility of a regulatory network that orchestrates gene expression as pollen tubes migrate through the pistil. Reverse genetic analysis of genes induced during pollen tube growth identified seven that had not previously been implicated in pollen tube growth. Two genes are required for pollen tube navigation through the pistil, and five genes are required for optimal pollen tube elongation in vitro. Our studies form the foundation for functional genomic analysis of the interactions between the pollen tube and the pistil, which is an excellent system for elucidation of novel modes of cell–cell interaction

    Characterization of the phosphoproteome of mature Arabidopsis pollen

    Full text link
    Successful pollination depends on cell-cell communication and rapid cellular responses. In Arabidopsis, the pollen grain lands on a dry stigma, where it hydrates, germinates and grows a pollen tube that delivers the sperm cells to the female gametophyte to effect double fertilization. Various studies have emphasized that a mature, dehydrated pollen grain contains all the transcripts and proteins required for germination and initial pollen tube growth. Therefore, it is important to explore the role of post-translational modifications (here phosphorylation), through which many processes induced by pollination are probably controlled. We report here a phosphoproteomic study conducted on mature Arabidopsis pollen grains with the aim of identifying potential targets of phosphorylation. Using three enrichment chromatographies, a broad coverage of pollen phosphoproteins with 962 phosphorylated peptides corresponding to 598 phosphoproteins was obtained. Additionally, 609 confirmed phosphorylation sites were successfully mapped. Two hundred and seven of 240 phosphoproteins that were absent from the PhosPhAt database containing the empirical Arabidopsis phosphoproteome showed highly enriched expression in pollen. Gene ontology (GO) enrichment analysis of these 240 phosphoproteins shows an over-representation of GO categories crucial for pollen tube growth, suggesting that phosphorylation regulates later processes of pollen development. Moreover, motif analyses of pollen phosphopeptides showed an over-representation of motifs specific for Ca²⁺/calmodulin-dependent protein kinases, mitogen-activated protein kinases, and binding motifs for 14-3-3 proteins. Lastly, one tyrosine phosphorylation site was identified, validating the TDY dual phosphorylation motif of mitogen-activated protein kinases (MPK8/MPK15). This study provides a solid basis to further explore the role of phosphorylation during pollen development
    corecore